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ABSTRACT Ns,.... 4L
The temporal development of two-dimensional viscous incompressible flow generated by

a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied
by integration of a velocity/vorticity formulation of the governing equations, using an explicit
finite-difference/pseudo-spectral technique and a new implementation of the Biot-Savart law.
Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a
and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear
speed ratio a = Qa/U (where fQ is the angular speed) up to 3.25. For values of a < 1,
our extension of the computations to larger dimensionless times than those possible in the
experimental work of Coutanceau & Mdnard (1985) or considered in the computational
work of Badr & Dennis (1985) allows for a more complete discussion of the long-term
development of the wake. We also discuss several aspects of the kinematics and dynamics
of the flow not considered earlier. For higher values of a, our results indicate that for Re =
200, vortex shedding does indeed occur for a = 3.25 (and possibly for higher values of a
also), in contrast to the conclusion of Coutanceau & M6nard (1985). The shedding process
is, however, very different from that which gives rise to the usual KArm n vortex street for
a = 0. In particular, consecutive vortices shed by the body can be shed from the same side,
and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices
of opposite sense are shed alternately on opposite sides of the body. The implications of the
results are discussed in relation to the possibility of suppressing vortex shedding by open-
or closed-loop control of the rotation rate.
1 This research was supported by a National Research Council Resident Research Associateship award.

2 Research was supported by the National Aeronautics and Space Administration under NASA Contract No. NASl-18605

and the Air Force Office of Scientific Research under AFOSR Grant 89-0079 while the second author was in residence
at the Institute for Computer Application in Science and Engineering (ICASE). NASA Langley Research Center.

3 This research was supported by NSF Grants MSM-8451157 and CTS-9017181 and AFOSR Grant 90-0156.

i



1. Introduction

Flow past a rotating circular cylinder is a prototypical problem in the study

of unsteady flow separation (Telionis 1981). It is also of considerable practical

importance in boundary layer control on airfoils (cf. Tennant et al. 1976 and Modi et

al. 1990), and in lift enhancement schemes employing the Magnus effect (Swanson

1961). Rotating all or part of a body may also have applications in active or feedback

control of vortex shedding, with important consequences for wake modification and

the reduction of flow-induced vibration.

In this work, we describe a study of the development of the two-dimensional flow

generated by a circular cylinder of radius a started impulsively into a combined steady

rotatory and rectilinear motion, with angular speed Q about its axis and rectilinear

speed U normal to its generators. The fluid is taken to be at rest initially. The two

parameters governing the development of the flow are the Reynolds number, defined

by Re = 2aU/v, where v is the kinematic viscosity, and the ratio of rotatory to

rectilinear speeds, defined by a = Qa/U.

Experimental studies of the nominally two-dimensional flow past a circular

cylinder undergoing steady rotatory and rectilinear motion have been conducted by

Prandtl (Prandtl 1925, Prandtl & Tietjens 1934), Taneda (1977, 1980), Koromilas &

Telionis (1980), Dfaz et al. (1983), Werl6 (1984), and most extensively by Coutanceau

& Menard (1985). An excellent summary of earlier work has been provided by the

latter authors, to whose paper the reader is referred. On the basis of their experiments

(primarily at Re = 200, but including results for Re as high as 1000), Coutanceau &

Menard concluded that a (modified) K,'m n vortex street
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"disappears completely for a greater than a certain limiting value aL.

The value of CiL has been found to be not very dependent on the Reynolds

number and to be about 2. For a > a L no other eddy is created after

E1 (the first eddy formed) during the time of the observations, so that the

eddy street must have been destroyed."

They found this conclusion to be consistent with the earlier experimental work by

Prandtl, Dfaz et al., and Werl6 and proposed, as a simple physical explanation for

the disappearance of the Ktrmdn vortex street at high values of a, that

"for low values of a, eddies would be alternately shed on each side of

the cylinder to form a Bnard-KArmdn street, as for the pure translation

(a = 0). But the eddies on the side moving in the direction of the rotation

decrease progressively when a increases and then disappear completely.

Thus it was found that the Bdnard-Kdrmdn structure begins to deteriorate

as soon as the peripheral velocity becomes greater than the free-stream

velocity (giving rise to a zigzag oscillating wake) and finally disappears

for a > 2.5."

When one examines the evidence for these statements, one finds that it is not

overly strong, particularly for the critical value of a and its dependence on Re. For

Re = 9000 and several values of a, Dfaz et al. (1983) made hot-wire measurements

of the streamwise velocity, and computed its autocorrelation. They found that for a =

0 and a = 1, the velocity autocorrelations were very similar, approximately periodic,

and had local maxima separated by a time corresponding to the nominal Strouhal

frequency. For a = 1.5 and a = 2, the autocorrelation function was progressively

reduced. Dfaz et al. (1983) did indeed conclude that "for peripheral velocities up to
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the value of the free-stream velocity, a distinct K~rmn vortex activity exists within

the wake, whereas for greater peripheral velocities, the Krmdn activity deteriorates

and disappears for values in excess of twice the free-stream velocity." On the other

hand, for Re .z 3300, Werld (1984) noted that for values of a in excess of that at

which separation is eliminated, "when the tangential velocity increases further, the

cylinder finally entrains an entire layer of relatively turbulent fluid in its rotation.

More or less periodic instabilities then appear." From this, it is not clear whether

vortex shedding is really suppressed by rotation at Re - 3300. At still lower Re,

we note that the experiments of Coutanceau & Mdnard (1985) were preformed in a

towing tank, which allowed observations to be made over only a very limited range

of dimensionless time.

The issues of whether the Kdrm~n vortex street is destroyed and vortex shedding

is suppressed are of considerable practical interest from the standpoint of wake

modification and the reduction of flow-induced vibration. In particular, it is of interest

to determine whether for a given Re, there is a value of QL beyond which vortex

shedding disappears. An additional factor tending to complicate the experimental

resolution of these issues is that in either a fixed reference frame or one translating

with the cylinder, the generation and shedding of vortices might be masked (Perry,

Chong & Lim, 1982) at large values of a by the high velocities induced in the near

wake by the rapidly rotating cylinder. The presence of a vortex in this flow would be

most conveniently determined from a reference frame moving with the vortex, which

is more easily accomplished by theoretical work than in an experiment.

To date, however, most of the theoretical studies have shed no light on the

question of whether cylinder rotation can suppress vortex shedding. The analytical

investigations of flow past a rotating and translating circular cylinder (Glauert 1957a,
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1957b, Moore 1957, and Wood 1957) are based on steady boundary layer theory, and

are hence inapplicable to the investigation of the unsteady separated flow associated

with vortex shedding. The computational investigations of the flow generated by a

rotating and translating cylinder reported by Ta Phuoc Loc (1975), Lyulka (1977),

Townsend (1980), Ingham (1983) and Ingham & Tang (1990) concern only the steady

flow with Re < 30. Although Shkadova (1982) discussed a computational algorithm

for the unsteady flow, she presented only a single set of streamlines for each of

four combinations of Re and a (Re = 20, 40, and 80 for a = 0.2, and Re = 40

for a = 3). She did not discuss unsteady effects for the case of a rotating and

translating cylinder, and it is not clear whether the streamlines presented for each

combination of Re and a pertained to a computed steady flow, or to instantaneous

streamlines (at unspecified times) in an unsteady flow. In the earlier work of Simuni

(1967) concerning the flow generated by a cylinder accelerated smoothly (rather

than impulsively) into rotatory and rectilinear motion, the time-dependence of the

body motion was not clearly specified, nor was any information provided about the

time-dependence of the computed solution.

To the best of our knowledge, the only investigations of vortex shedding by

a steadily rotating and translating circular cylinder in the laminar regime besides

the experimental work of Coutanceau & M~nard (1985) are the computational

investigations of Badr & Dennis (1985) and Badr, Dennis & Young (1989), both

of which were conducted in conjunction with those experiments. Although these

investigators realized the importance of extending the computations to larger a, their

work was limited to a _ 1, and so shed no light on the conclusion of Coutanceau

Minard (1985) cited above.

In the present work, for Re = 200, we present computations extending the range
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of a to the highest value (3.25) studied experimentally by Coutanceau & Mdnard

(1985). After comparing our results at lower values of a to the previous work of

Coutanceau & Mdnard (1985) and Badr & Dennis (1985), we present results for the

two largest values of a (2.07 and 3.25) considered by the former authors. Ours is

the first computational investigation at Re = 200 for a > 1, and is significant in light

of the earlier conclusions that vortex shedding is suppressed for a > 1 or a > 2.5.

Our computed results are in excellent agreement with the experiments of Coutanceau

& M~nard (1985) for Re = 200 and a = 2.07. We then present strong evidence in

support of the hypothesis that rotation does not suppress vortex shedding for Re =

200 and a = 3.25. This evidence, consisting of streamlines viewed from a reference

frame moving with a vortex, and of contours of constant vorticity, is of a type not

easily obtainable in the laboratory, and provides an important demonstration of the

capability of computational methods to resolve questions that arise from experiment.

In §2, we present the governing equations, along with a transformed version

appropriate for computations with a body-fitted time-dependent grid used in the

computations at a = 3.25. In §3, we briefly describe the numerical methods

employed, including a new implementation of the Biot-Savart law used to satisfy

boundary conditions on the vorticity at the cylinder and on the velocity in the far

field. Section 4 discusses a technique more general than that employed in earlier

studies for determining the initial flow (at t = 0+). The main results, including

comparisons to the experiments of Coutanceau & Mdnard (1985) and discussion of

features of the flow not elucidated by their work or earlier computations, are presented

in §5, followed by our conclusions in §6.



2. Governing equations

A nonrotating reference frame translating with the cylinder is used in this study.

In this frame, the fluid at infinity has a uniform velocity of magnitude U in the

x-direction, and the cylinder rotates in the counterclockwise direction with angular

velocity 0, as shown in figure 1.

The motion of an incompressible viscous fluid is governed by the continuity and

momentum equations. A velocity/vorticity formulation, consisting of the vorticity

transport equation and a vector Poisson equation for velocity, is used in this study.

In two dimensions, the dimensionless equations are (Wr 1975; Fasel 1976):

O9W - v 2v
- + V7 WV = VW (1)

and

V2V = -v x (We-) (2)

where we use the cylinder radius a as the length scale, and alU as the time scale.

The velocity is normalized by the uniform translational speed U. Equation (2) is

derived from the continuity equation

V. *V = O, (3)

the definition of vorticity for a two-dimensional flow

we, = V x V7, (4)

and the vector identity
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V x V x V =V(v. V) - V .(5)

The dimensionless boundary conditions are

V ex at infinity (6)

V = -a sin 04 + a cos 04 on the cylinder surface. (7)

To allow for computation of the flow on a time-dependent grid, we write the

components of (1) and (2) in general body-fitted ( , 77) coordinates as

Wt = XJ(Loo', - Loot) - -Wx7- W,7xt)

- Y'(uwx - y(UW)17 + X7(VW)t - X(W)q] (8)

+ R2(aw -/ + -w,) + 2

aut - 20u/Th + yu,rn + J 2 (Put + Qu) = J(xnwt - xtwn) ,  (9)

and

ct.tt - 20vu, 7 + yv,7 + j 2 (Pv + Qv,") = J(y,wt _ ytW,7)  (10)

(Reddy & Thompson 1977) where
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2 2
a = x 17 + y,

,= x~x, + y~v

-1 = x2 + y , (11)

P = GX + GY

Q = ?Ix + 77yy,

and

J = xy,7 - xy (12)

is the Jacobian of the mapping between the (x, y) and (7, 7) coordinate systems. Here,

subscripts denote partial differentiation. In (8) and in the computer code developed,

we have allowed the grid in the physical (x, y) space to be time-dependent. This

introduces additional terms associated with xt and yt into the governing equations

in the generalized coordinate system. In this study, the body-fitted grid is simply

one of cylindrical polar coordinates and is time-independent, except for a = 3.25

where the grid is made time-dependent for the calculation between t = 24 and 54.

The grid is uniformly spaced in the circumferential direction and is stretched in the

radial direction, as described below.

3. Numerical methods

In numerical simulations, it is necessary to confine the computation to a finite

domain. As a result, (6) cannot be directly applied at the outer perimeter of

the computational domain. Various far-field boundary conditions, including those

derived from potential flow and Oseen expansions, have been adopted in the past.

The conditions imposed at the outer perimeter of the computational domain have
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been found to strongly influence the accuracy of computations of steady flows in this

unbounded geometry (Fornberg 1980; Ingham 1983; Ingham & Tang 1990). A second

difficulty, common to most simulations based on primitive variable (pressure/velocity)

or velocity/vorticity formulations is the fact that conditions on either the vorticity or

pressure are required at solid boundaries. In this work, both of these difficulties are

resolved by use of a new implementation of the Biot-Savart law briefly described

below. For further details, the reader is referred to the work of Wu and coworkers

(Wu & Thompson 1973; Wu 1976; Wang & Wu 1986), and Chen & Pearlstein (1991).

The definition (4) allows determination of the vorticity field from a known velocity

field. Conversely, one can determine the velocity field from a known vorticity field

via the generalized Biot-Savart law, which in two dimensions can be written as

1 Z0(i-, t)×x(i!- r-0o)dV - 2 )= - i,---712 d
D (13)I f 2 Q(F, t) x (ir-- A0)dm

27- 1 Jj2 Q- ,1) I I dA + Vw
B

(Wu 1976), where the subscript 0 denotes the field point where the velocity is

evaluated, and V, is the uniform flow at infinity. The first integral in (13) is

evaluated numerically over the fluid domain D, while the second integral is evaluated

analytically over the solid body B. Here, W- = wFz is the vorticity at a point within

the fluid, and (I = E_ is the angular velocity of a point within B.

Equation (13) serves two purposes in this study. First, if the vorticity field W- (f', t)

is known and the domain D is large enough to contain all of the vorticity generated

at the solid boundary prior to time t, then the velocity on the perimeter of D can be

evaluated directly by numerical integration of (13). Second, by linking the velocity
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and vorticity fields, (13) provides a basis for determining the vorticity on the solid

boundary. Applying (13) to points i'b on the solid boundary, one obtains

P~ ~ W~ V) 0 ff (?QX (f - Fb)V t)b 0 - d
D1 D12 (14)

f0 X - b) dA+V..
B

If f , and the body motion V(r- , t) and Q are given, and the vorticity is known

everywhere except on the solid boundary, then the only unknowns in (14) are the

vorticity values on the solid boundary. Therefore, one can solve (14) as a vector

Fredholm integral equation of the first kind to obtain the vorticity values at grid

points on the solid boundary.

In this work, the numerical integration of (13) and (14) is performed over each

quadrilateral element in D using isoparametric representations commonly used in

the finite element method. All variables are located at the intersections of grid

lines, namely, comers of quadrilateral elements. The vorticity distribution over each

quadrilateral element is approximated by bilinear shape functions. Integration is then

performed over the [-1, 11 x [-1, 1 ] square in the isoparametric plane. When the field

point is far from the quadrilateral element, more efficient asymptotic formulas (Weston

& Liu 1982; Ting 1983) are employed. Further details are provided in Chen (1989).

In deriving the discretized forms of (8)-(10), second-order central differences are

used for all derivatives in the radial direction r7, while a pseudo-spectral transform

method (Orszag 1980; Zang et al. 1982) is used to evaluate all derivatives in the

circumferential direction . The cross-derivative terms are approximated by central

differencing in 71 followed by pseudo-spectral transformation in . We use a fully
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explicit method to advance the vorticity transport equation (8) in time to obtain the

vorticity values at the interior grid points. The vorticity on the outer perimeter of

the computational domain is obtained by extrapolation. At this stage, the vorticity

on the solid boundary lags by one time step. If this vorticity field were used to

evaluate the right hand side of (14), the result would not satisfy the no-slip and

no-penetration conditions. The continuous generation of vorticity at the cylinder

is properly simulated in our computations by adding or subtracting vorticity at the

boundary at each time level in order to satisfy (14) identically.

It should be noted that the solution to (14) is not unique (Wu 1976; Taslim et al.

1984). To render the solution unique, Wu (1976) developed and imposed the principle

of vorticity conservation, which states that the total vorticity in the combined fluid

and solid regions must be zero at all times. A more general and robust procedure,

applicable to flows over single and multiple solid bodies, has been developed by

Chen & Pearlstein (1991), and is used here.

The computational loop to advance the solution from one time level to the next

consists of the following steps:

1. The discretized vorticity transport equation (8) is advanced explicitly to obtain

new vorticity values at all interior grid points, using a second-order rational

Runge-Kutta method (Wambecq 1978). In contrast to the three-step Adams-

Bashforth method used by previous authors, this allows a much larger time-step

size due to a less severe stability constraint.

2. Using known vorticity values at the interior grid points, the kinematic constraint

(14) is used to update the vorticity values on the solid boundary.

3. Using the updated vorticity field, the velocity at points on the outer perimeter of
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the computational domain is evaluated by (13). Once velocity boundary values

are known, Poisson equations (9) and (10) are solved for the new velocity field.

The discretizations of (9) and (10) are 11-banded and block-diagonal in form, and

are solved by a preconditioned biconjugate gradient routine (Chen et al. 1989).

The method orulined above is particularly well suited for the initial development

of the flow generated by impulsively started bodies. This is because the vorticity is

initially concentrated near the solid body. Therefore, the numerical simulation can

be confined to a domain within which all vorticity is contained. Since the velocity

at the outer perimeter of the computational domain is calculated via (13), imposition

of computational far-field velocity boundary conditions is avoided. The use of (13)

in calculating the far-field velocity is numerically exact at time t if the computational

domain is large enough to contain all vorticity generated at the cylinder surface prior

to t. We note that, in the streamfunction/vorticity formulation, the streamfunction

values on the outer perimeter of the computational domain can be obtained similarly

by using an integral constraint equation (Wu & Sampath 1976). We also note that

the velocity field can be obtained by applying (13) at every grid point. This results in

a point-by-point scheme which, unlike schemes using the Poisson equations (9) and

(10), does not require solution of large linear equation systems. This approach was

adopted in Wu's earlier work, and might be attractive on massively parallel computers.

The size of the computational domain is chosen according to the time span

investigated. Here, we set the outer boundary of the computational domain to be a

circle of radius 24 for t _< 24. We use 128 uniformly spaced and 120 stretched grid

lines in the 0- and r-directions, respectively. The stretching function of Vinokur

(1983) is used to distribute the circular grid lines on 1 < r < 24. The stretching

function allows grid points to be clustered near one or both ends of the domain, or
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anywhere between them, by adjusting two parameters so and Si. Here, so and s are

the ratios of the spacing if N points were distributed uniformly, to the spacings at

the inner and outer boundaries, respectively. For a = 0.5 and 1, we set so = 5.0 and

si = 0.25. The grid spacings adjacent to the cylinder and at the outer perimeter are

4% and 75% of the cylinder radius, respectively. For a = 2.07 and 3.25, we set so

= 10.0 and s, = 0.25 to further cluster circular grid lines near the cylinder, with grid

spacings adjacent to the cylinder and at the outer perimeter being 2% and 76% of the

cylinder radius, respectively. At the end of the simulation, the magnitude of vorticity

on the outer perimeter is less than 10- 5 for all cases except as noted, indicating that

only a negligible amount of vorticity has escaped the domain.

4. Determination of the initial flow

In most numerical simulations of flow over impulsively started bodies, the initial

flow field is taken to be the potential flow, since the vorticity at t = 0+ is concentrated

on the body surface in the form of a vortex sheet. Perturbation solutions in which t is

the small parameter have also been used as initial conditions (Collins & Dennis 1973

for a = 0; Badr & Dennis 1985 for a # 0). Both approaches require special techniques

in order to obtain the initial flow field. In the present work, determination of the initial

flow field requires no special treatment. The same procedure used for determining the

boundary vorticity distribution satisfying the no-slip and no-penetration conditions

is applied. More specifically, (14) is solved for the unknown boundary vorticity at

t = 0+ , with the vorticity taken to be zero at every grid point away from the cylinder

surface. Once the boundary vorticity values are obtained, the initial velocity field

is determin I by solving (9) and (10), with the velocity on the outer perimeter of

the computational domain determined by application of (13) to points on the outer
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perimeter. This versatile procedure enables the numerical code to handle bodies of

arbitrary shape undergoing arbitrary rotational and translational motion.

Errors in approximating the vorticity layer of infinitesimal thickness at t = 0+ are

inherent to any computational scheme. However, as discussed by Lugt & Haussling

(1974), even in the worst case of a body set impulsively into motion, the duration

of these errors is confined to a very limited time close to t = 0. For the present

algorithm, this will be confirmed in §5 by comparison of our numerical results to the

perturbation solution of Badr & Dennis (1985) at small times.

5. Results and discussion

In this section, numerical results for Re = 200 with a = 0.5, 1, 2.07, and 3.25

are presented and discussed. The parameter values chosen allow comparison to the

experimental results of Coutanceau & M6nard (1985) and permit a critical evaluation

of their conclusions regarding the suppression of vortex shedding by rotation. For a

= 0.5 and 1, excellent agreement with the experimental (Coutanceau & M6nard 1985)

and numerical (Badr & Dennis 1985) results is obtained. For a = 2.07, for which

no numerical results have been previously reported, we obtain excellent agreement

with experiment. For a = 3.25, the relatively small disagreement between experiment

and our computations is probably due to three-dimensional effects in the former (see

§5.4). For all cases investigated, we continue the simulations to larger dimensionless

times (t > 24) than could be studied experimentally by Coutanceau & M~nard (1985),

so that the nature of the long-time solution can be better discerned. For a = 3.25,

we further extend our calculation to t = 54 to include shedding of the second and

third vortices. We note that the time scale adopted here is the same as that used by

Badr & Dennis (1985). Conversion of our dimensionless times to those reported by
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Coutanceau & Mdnard (1985) requires multiplication of the latter by a factor of two.

As discussed in §4, the solution procedure presented in §3 is applied at t = 0+ to

obtain the initial flow field. Errors are present due to the inability of any numerical

scheme to resolve the infinitesimal vorticity layer at t = 0+. To confine these errors to

small times near t = 0, small initial time steps are used for all cases. For the first 20

time steps, At = 10- 4 is used. This is followed by 28 steps with At = 10- 3, which

brings the time level to 0.03. A constant At (10-2 for a = 0.5 and 1; 2.5 x 10- 3

for a = 2.07 and 3.25) is taken for the rest of each simulation. The time-step size

is not dictated by the numerical stability constraint, but rather is chosen on the basis

of accuracy considerations. To demonstrate the accuracy of the initial flow field, we

show in figures 2(a-d) the variation of vorticity on the cylinder for four values of a

at small times. The numerical results are compared to the asymptotic formula

W(1, t) "{a (2r-2-2 ) + (47r- + A) sin0 + (2.7844A - 6r3 atosO}

+ { .6.5577x - 47r-(1 + -7r-) tsin20}
(15)

given by Badr & Dennis (1985), where

/ 2t2
A= 2 ( 2t) . 1(16)

RIeJ

We see that agreement with the asymptotic results improves as t increases. Better

agreement is achieved for a = 2.07 and 3.25 since a smaller time-step size is used.

These results demonstrate that errors are indeed confined to a very limited time close

to t = 0, as reported by Lugt & Haussling (1974).
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5.1J = 0.5

In this subsection, we extend the computations of Badr & Dennis (1985) to larger

dimensionless times than considered by them or in the experiments of Coutanceau

& Mdnard. The kinematics and dynamics of vortex shedding are discussed using

instantaneous streamlines in two different reference frames, as well as vorticity

distributions.

Figures 3(a-p) show a sequence of instantaneous streamlines for 1 : t5 24, viewed

from a nonrotating frame translating with the circular cylinder. The streamfunction

is computed from the velocity field by a least-squares method described by Chen

(1989). Comparison to the flow visualizations of Coutanceau & Mdnard (1985) shown

in figures 4(a,b) demonstrate the excellent agreement between our computations and

their experiment. We see that the numerical results are virtually identical to the flow

visualizations, as is also the case for the results of Badr & Dennis (1985). For t < 13,

a detailed discussion of the flow development has been presented by Coutanceau &

Mdnard (1985), to which the reader is referred. We adopt their notation and observe

that the coalescence of two "intermediate" eddies E' and E" to form eddy E 3 at t

12 (figures 3i-j) indeed repeats [at t ; 22; figures 3(n-o)] as predicted by Coutanceau

& Mdnard (1985). (The subscript here denotes the order of appearance of eddies

after the impulsive start.) The transposition of saddle points S2 and S3 associated

with eddies E2 and E', respectively, discussed by Coutanceau & Mdnard (1985)

and sketched by Badr et al. (1986), is clearly shown in our figures 3(g-h). Also,

a common boundary for E2 and E', which was difficult to observe experimentally

(Coutanceau & Mdnard 1985) due to limitations of the flow visualization technique,

does indeed exist, as shown in figure 3g. The common boundary soon becomes an

"alleyway" for fluid to pass through, as shown in figure 3h. As noted by Eaton
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(1987), existence of such an alleyway in an unsteady flow does not imply that fluid

is carried from one side of the wake to the other.

As discussed by Perry et al. (1982), the streamlines are not invariant with respect

to a change in reference frame, and the vortex street can appear very differently in

different frames. To best observe the development of a vortex, the observer should

move with its center (Lugt 1979). Otherwise, the vortex can be masked by the motion

of the observer relative to the vortex (Williamson 1985; Coutanceau & M6nard 1985).

This masking phenomenon was described by Coutanceau & M~nard as the opening up

of vortices and disappearance of closure points into a wave-like pattern, as sketched

in Lugt (1979). Since an attached vortex translates with the cylinder, it can be clearly

observed in a frame translating with the cylinder. However, after the vortex is shed

into the fluid, its core is, especially in the far-wake, essentially stationary with respect

to the undisturbed fluid, although it still moves slightly in the direction of the cylinder

translation. Therefore, it is generally easier to observe shed vortices in a frame fixed

with the undisturbed fluid. The instantaneous streamlines observed in such a frame

are shown at selected times in figures 5(a-c). As expected, the shed vortices are

clearly distinguish ble. We note that two additional vortices are shed over an interval

of about 10 dimensionless time units, and that the vortex patterns near the cylinder

are very similar in figures 5a and 5c. We further note that in a moving frame, the

cylinder itself is not a streamline, and the attached vortices in figures 5(a-c) are now

masked by the velocity field in the near wake of the cylinder. In a frame translating

with the cylinder, however, the shed vortices are hidden in the oscillating wake, as

shown in figures 6(a-c) for the values of t shown in figures 5(a-c). At the same

dimensionless times, figures 7(a-c) show the corresponding vorticity contours, which

are invariant with respect to translation of the observer. Because rotation divides the
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surface of the cylinder into "downstream-moving" and "upstream-moving" parts,

a basic symmetry of the vorticity field for the nonrotating (a = 0) case [associated

with the fact that for a T-periodic flow, the relations

u(r, 0, t) = u(r, -0, t - -r)
(17)

v(r, 0, t) = -v(r, -0, t - -r)

lead to w(r, 0, t) = -w(r, -0, t - r), where 0 < r < T is a phase difference] is

broken. Nonetheless, the process is topologically similar to the a = 0 case, with the

shedding of vortices of alternating rotational sense being accompanied by thinning

and severance of elongated vorticity contours emanating from opposite sides of the

cylinder. As in the experiments of Dfaz et al. (1983) at higher Re, cylinder rotation

has the effect of altering the initial trajectories of the shed vortices, although these

are expected to become parallel to the direction of cylinder translation as the vortices

move farther away from the rotating cylinder and are advected downstream. As for

a = 0, vortices of opposite sense lie on opposite sides of a "street", although the

rotation has clearly displaced the midline of the street upward.

Figures 8(a,b) show that the computation of vortex core and saddle locations using

streamfunction values [in excellent agreement with those computed by Coutanceau

& Menard (1985)] can differ significantly from those computed using the vorticity

distribution. For example, at t = 7, the streamwise location of the core of the first

vortex is at about x/a = 3.3 as computed from the streamfunction data (in a frame

translating with the cylinder), and a bit less than x/a = 2.5 as computed from the

vorticity contours. This clearly illustrates the effect of streamline masking on vortices

moving with velocities significantly different from the reference frame in which they

are observed.
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As a further check on the accuracy of our results, we show in figures 9(a,b)

and 10(a,b) profiles of the velocity components at various locations. Also shown

in these figures are representative data taken from the experiments of Coutanceau

& Mdnard (1985). Figures 9(a,b) show the temporal evolution of profiles of the u-

and v-components of the velocity, respectively, along the x-axis in the wake of the

cylinder for t < 8. Good quantitative agreement is obtained. In figures 10(a,b), we

show the u-component above and below, respectively, the cylinder along the y-axis.

Near the cylinder, agreement with experiment is very good. Farther from the cylinder,

there is slightly more scatter in the experimental data. In this connection, we note

that our results are graphically indistinguishable from those of Badr & Dennis (1985),

although different numerical methods have been employed.

5.2 a =1

For a = 1, figures 11 (a-1) show instantaneous streamlines for t _< 24, viewed

from a nonrotating frame translating with the cylinder. These results are virtually

identical to the flow visualizations [figures 9(a-h) of Coutanceau & Mdnard (1985)].

Compared to the a = 0.5 case, where the second eddy E2 appears at t ; 2.0, here E2

and the third intermediate eddy E3 are formed almost simultaneously at t , 6.5, as

shown in figure 1 Ic. During the next cycle of vortex formation, however, E4 appears

before E. is formed, as seen in figures 1 l(h,i). In general, the increase in a tends to

inhibit the formation of the vortex at the downstream moving side of the cylinder, as

reported in previous experiments (Dfaz et al. 1983; Coutanceau & Mdnard 1985).

Figures 12(a-e) show that the trajectories of the shed vortices for a = I are

qualitatively similar to those for a = 0.5, except that the vortices shed frcm the

downstream-moving side now lie above the midline of symmetry (0 = 0), and due
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to the counterclockwise fluid motion generated near the cylinder by its rotation, will

remain above the midline during their subsequent advection downstream. Otherwise,

the topology of the shedding process is altered relatively little, with vortices of

alternating sense being shed from opposite sides of the cylinder, and subsequently

being found on opposite sides of an albeit distorted "street" as they are advected

downstream.

Figures 13(a,b) show the temporal evolution of profiles of the u-component and

v-component, respectively, of the velocity along the x-axis in the wake of the cylinder

for t !- 8. Again, good agreement with experimental results (Coutanceau & Mdnard

1985) is obtained.

5.3 a = 2.07

As a increases, the vorticity layer generated at the upstream moving wall

intensifies, resulting in even larger radial derivatives. Consequently, it becomes

more difficult to maintain accuracy, as pointed out by Badr & Dennis (1985). We

are able to achieve accurate numerical results by using finer radial grid spacings

near the cylinder, as discussed in §3, and a smaller time-step size, as discussed at

the beginning of this section. Figures 14(a-h) show instantaneous streamlines for

t 24, viewed from a nonrotating frame translating with the cylinder. For t _< 9,

our results are again virtually identical to the flow visualizations of Coutanceau &

Mdnard (1985), as shown in figures 15(a,b).

To better elucidate the vortex shedding process, we show in figures 16(a-f) the

vorticity contours for t < 24. As for smaller values of c, vortex shedding still

occurs for a = 2.07, and consists of the shedding of vortices of alternating rotational

sense from opposite sides of the cylinder. However, at this larger rotation rate the
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asymmetry of the process is clear, and manifests itself in the considerably reduced

strength of the vortices shed from the downstream-moving side of the cylinder

[relative to those for a = 0.5 shown in figures 7(a-c), and relative to those of opposite

rotational sense for a = 2.07], as well as in the fact that the shed vortices seem to

be forming a "single file" line, rather than being paired off (according to rotational

sense) on opposite sides of a "street". The relative weakness of the vortices shed

from the downstream-moving side of the cylinder is due to the fact that immediately

after the impulsive start, this part of the rotating boundary travels at about the same

speed as the adjacent fluid. The weak vorticity layer generated near 0 = 2700 (shown

in figure 2c) is responsible for the weakness of the shed vortex.

5.4 a = 3.25

For a = 3.25, figures 17(a-d) show instantaneous streamlines for t < 24, viewed

from the reference frame given in figure 1. We note that our computational results at

t = 9 differ slightly from the flow visualization of Coutanceau & Mdnard (1985). We

believe it is likely that this results from three-dimensional effects due to appreciable

sidewall boundary layers for large values of a at large time in the experiments,

as discussed by Coutanceau & Mdnard (1985). We note that although for a = 0,

the nominally two-dimensional flow at Re = 200 is unstable with respect to three-

dimensional disturbances (Williamson 1988), no information regarding the effect of

rotation on the stability appears to be available. Computed vorticity contours are

shown for t < 54 in figures 18(a-h). At t = 24, figure 18c shows that the elongated

vorticity contour has not yet been severed. To investigate whether the vortex shedding

process continues to larger t for this value of a, we let the size of the computational

domain grow linearly in time until t = 54 in order to extend the computation. The
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same values of so and sl in the stretching function are used to distribute 120 circular

grid lines between r = 1 and r = 1.5t - 12. The numerical solution at t = 54 is

not very accurate since the vorticity at the outer perimeter (r = 69) is not negligible

(on the order of 10-1 or smaller) at the end of the simulation. Nonetheless, we

believe that our computation of the vortex shedding in the near wake is qualitatively

correct, even for t > 32 (at which time the maximum of the absolute value of the

vorticity on the outer boundary is less than 4 x 10-4). Figure 18e shows that the

second vortex is shed into the fluid as for smaller a, although shedding here occurs

at a much later time. However, even in a reference frame fixed with the undisturbed

fluid, the weak second vortex is masked by the high velocity induced in the near

wake by the rapidly rotating cylinder. Therefore, for large a it is not surprising

that previous flow visualization experiments, including those performed in a frame

translating with the cylinder, have failed to reveal the shedding of a second (weaker)

vortex. Moreover, in the transient experiments of Coutanceau & M6nard (1985),

experimental limitations prevented continuation of the flow to the dimensionless time

at which the second vortex would have been shed. These difficulties have led to the

erroneous conclusions that for a > 2.5 (or a > 1), no vortices are shed after the initial

(strong) starting vortex, and that the vortex street is completely destroyed.

To render the second vortex distinguishable, we show in figure 19a the streamlines

at t = 32 in a reference frame moving with the core of the second vortex.

Experimentally, this would be a difficult task since a camera would have to move with

the vortex core velocity vector (uc, v,) relative to the cylinder, which is not known

a priori. Numerically, this is achieved by simply subtracting streamfunction values

corresponding to the velocity (u, v) of the vortex core from those in the reference

frame fixed with the cylinder. The second vortex is clearly visible in a frame moving
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with the core of the third vortex (figure 19b), while the first vortex is still sufficiently

strong to be visible in this reference frame (in which its core velocity is nonzero).

5.5 Temporal evolution of the lift and drag coefficients

Finally, we present the temporal evolution of the lift and drag coefficients defined

by
L

CL = L (18)pU2 a

and
D

CD = pU2
D  (19)

where L and D are the lift and drag forces acting on the cylinder, respectively, and p

is the density of the fluid. Integrating the pressure and shear stresses over the surface

of the cylinder, we can express these in r-O coordinates as

2r

CL = CLp + CLf = ]cosdO (20)

0

and

2r

CD= CD+ + CDf = e wbI sinOdO, (21)

0

where the subscripts p and f denote contributions due to the pressure and friction,

respectively, and the subscript b denotes quantities evaluated on the cylinder. We

note that (20) and (21) differ from the expressions given by Badr et al. (1989) by

a sign, due to a difference in the definition of vorticity. Figures 20(a,b) show the

temporal evolution of the lift and drag coefficients at various a for t < 24. The
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negative values of CL indicate that the lift force is in the -y direction. The time-

periodic nature of CL is well established for ce = 0.5 and 1. At higher values of a,

however, a longer time-span is required for periodicity to be established since the

second and subsequent eddies form and are shed much later, as discussed above. In

figures 21(a,b), the pressure and skin friction contributions to the lift and drag are

drawn separately for a = 1. Similarly small viscous contributions to CL and CD are

found for all other values of a investigated. It is clear that lift and drag are largely

due to the pressure force, consistent with previous work showing that the Magnus

effect is primarily an inviscid phenomenon.

6. Conclusion

Our computations of the temporal development of the flow generated by a circular

cylinder started impulsively from rest into steady rotatory and rectilinear motion at

Re = 200 show that for the largest value of a (3.25) investigated by Coutanceau &

M~nard (1985), vortex shedding continues after the first vortex is shed, contrary to

earlier conclusions. That these authors were led to conclude that sufficiently high

values of a suppress vortex shedding at Re = 200 is likely due to the fact that their

experimental facility did not allow for visualization of the flow for a long enough

time. Even if that limitation had been overcome, however, it is likely that their flow

visualization technique (which approximately yields instantaneous streamlines) would

have failed to reveal the presence of the second vortex, due to masking by the large

velocities induced in the near wake by the rapidly rotating cylinder.

We note that for a = 3.25 the time interval between the shedding of the first and

second vortices is much longer than the time required to shed the first. We conjecture

that for subsequent vortices, the interval between shedding of the 2n-th and (2n+l)-
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th vortices will be considerably shorter than the interval between shedding of the

(2n+l)-th and (2n+2)-th.

We also observe that for a = 2.07 and 3.25, the second vortex (shed from

the downstream-moving side of the cylinder) is much smaller than the first, and

conjecture that, in general, the 2n-th vortex shed will be significantly smaller than

the (2n+l)-th. Unlike the nonrotating (a = 0) case, there is no requirement that the

vortices shed from opposite sides of the cylinder be of equal magnitude, or even that

consecutive vortices must be shed alternately from opposite sides of the cylinder. In

fact, there does not appear to be any reason why vortices cannot be shed from a

single (upstream moving) side of the cylinder. Thus, we further conjecture that for

a given Re, there exists a critical value of a be Iid which vortex shedd,,g occurs

from only one side of the cylinder.

From the standpoint of controlling laminar two-dimensional vortex shedding from

a circular cylinder by using either "active" control [a term that in the fluid mechanics

literature has come to mean a time-periodic, and frequently harmonic input, e.g.,

Q(t + T) = Q(t) or Q(t) = Qo sin 27rft0 or feedback control, the present calculations

show that the nature of the vorticity field as well as the vortex shedding process

can be significantly altered by cylinder rotation. To the best of our knowledge, the

only investigations to date concerning the effect of a time-dependent rotation rate

on the shedding process are the experimental studies of Taneda (1977, 1978) and

Tokumaru & Dimotakis (1989), and the combined experimental and theoretical studies

by Okajima, Takata & Asanuma (1975), Mo (1989), and Wu, Mo & Vakili (1989).

The experimental work of Taned (1978) for 30 < Re _< 300 [including the

range in which Hopf bifurcation (Jackson 1987, Zebib 1987) of the steady two-

dimensional flow at Re ; 45 leads to unsteady asymmetric two-dimensional solutions
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exhibiting vortex shedding] shows that for sufficiently large values of the amplitude

and frequency of time-harmonic rotatory oscillations, vortex shedding (and indeed

the formation of attached vortices) can be eliminated. Moreover, Taneda's flow

visualizations (see his figure 3d) indicate that under certain circumstances, a flow can

be generated which is symmetric about 0 = 0 at at least one phase during the forcing

cycle. This suggests that the flow can be driven to a symmetric state, and provides

reason to believe that it can be stabilized (in the control-theoretic sense; cf. Kuo

1975) about a symmetric state in which no vortex shedding occurs.
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FIGURE 1. The reference frame.
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(b)

FIGURE 5. Instantneous streamlines for Re =200, a r 0.5, viewed rrom a frame fixed with the
undisturbed fluid. Dashed (solid) lines represent constant positive (negative) streamfunction values
with AO = 0.1 between them. (a) I = 12.0, (b) I = 17.0, (c) i a 22.0.
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(a)

(b)

(c)' "'

FIGURE 7. Equi-vorticity contours ror Re = 200, a - 0.5. Dashed (solid) lines represent constant
positive (negative) vorticity values with a constant Increment of 0.5. Vorticity contours with magnitude
less than 0.5 are omitted for graphical clarity. (a) I = 12.0, (b) I , 17.0, (c) I = 22.0.
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FIGURE S. Trajectories of the centers Q~ and the closure points Si obtained from (a) Instantaneous
streamline plots (1,) equi-vorticlty contours plots ror Re - 200, a - 0.5.
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FIGURE 9. Temporal evolution of velocity profiles along dhe z-axis In the wake of dhe cylinder
for Re - 200, a a 0.3. - :numerical solution; symbols: experimental data of Coutnnceau &
Mdnard (1983). (a) ts-component. a. t a 1.0; A, t w 3.0; 5~i .0. (b) v-component, 0 13 t 2.0;
A~, t = 4.0; 0. t a 6.0.
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FIGURE. 10. Tmporal evolution of it-velocity proillcs along the y-axls for Re - 200,0 - 0.5.
numerical solution; symbols: experimental data of Coutanceau & Mdnard (1985). (a) e = W., E, t
1.0;, 0, 1 = 2.0; A, t 4.0; 0. t - 6.0. (b) 0 270,.,,:t 0.5; A, I w 4.0; *, I - 5.0; 0,. t = 6.0.
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0.g

(b)

_, t

FIGURE 12. Equi-vorticity contours for Re =200, a 1.0. Dashed (solid) lines represent constant
positive (negative) vorticity values with a constant increment or 0.5. Vorticity contours with magnitude
less than 0.5 are omitted for graphical clarity. (a) t = 8.0, (b) I - 10.0, (c) I - 14.0, (d) I - 20.0,
(e) I - 24.0.
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FIGURE 13. Temporal evolution of velocity profiles along dhe r-axls In dhe wake of the cylinder
for Re - 200, a -1.0. - : numerical solution; symbols: experimental data of Coutanceau &
Mdnard (1985). (a) ti-component, 0, t = 1.0; A, I - 3.0; *, I = 5.0. (b) ti-component, 0, t 2.0.
A. 1 3.0; t, w 5.0.
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(b)

(C)

(d)

(e)
I

, '

(.f) "

FIGURE 16. Pqui-vorticity contours for Re 200, m 2.07. Dashed (solid) lines repiesent constant
positive (negatve) vorticity values with a constant Increment or o.s. Vorticity conkios with magnitude
less than 0.5 are omitted for graphical clarity. (a) I - 5.0, (b) t - 9.0. (C) i - 13.0. (d) i = 17.0.
(e) t - 21.0, (1) t - 24.0.
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(b)

(c)

(d)#

O'

(e) 0

3..()t=4..g)t- 4, (h) 54.0.

"-I

gi,, ©

I .t

(h) 0 '-: -

FIGURE 18. Equl-vorlkcity contours for Re .. 200, o-,3.23. Dashed (soild) lines represent constant
positive (negative) vort~icity values wth a constant increment of 0.5. %~ticity contours with magnitude
less than 0.5 tie omitted for grphibcal clarity. (a) u = 8.0, (b) t - 12.0, (C) u - 24.0, (d') 1-= 32.0, (e)
im, 35.0, (I) i - 41.0, (g) t ,, 41.0, (h) u - 54.0.



(a)

(a)

FIGURE 19. Inmlantaneous streamlines for Re = 200, at 3.25, (a) viewed from a frame moving
with the core of the second vortex (Q = 32.0). (b) viewed from a frame moving with the core Of

the third vortex ( 1, 54.0). Dashed (Solid) lines represent Constant positive (negative) streamfutiction

values with A0b = 0.2. Note that in (b), eddy E2 has passed from the field of view.

57



- 15.0

-10.0

C-5.0//

+50.0

0.0 4.0 8.0 12.0 16.0 20.0 24.0

t

6.0 *

(b)(b

4.0-

4.0/ *.

2.0../......

0.0 4.0 8.0 12.0 16.0 20.0 24.0

t
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